Документы 1 - 10 из 19
1.

Количество страниц: 6 с.

Comparing temperature of subauroral mesopause over Yakutia with SABER radiometer data for 2002–2014 = Сравнение температуры субавроральной мезопаузы над Якутией с данными радиометра SABER с 2002 по 2014 г. / A. M. Ammosova, G. A. Gavrilyeva, P. P. Ammosov, I. I. Koltovskoi // Солнечно-земная физика = Solar-Terrestrial Physics. – 2017. – Т. 3, N 2 : 13-я российско-китайская конференция по космической погоде. – С. 58-63. – DOI: 10.12737/22598.
DOI: 10.12737/22598

2.

Количество страниц: 12 с.

Frozen graves of Yakutia, a chronological sequence / S. Duchesne, R. Bravina, V. Popov [и др.] // Вестник археологии, антропологии и этнографии. – 2020. – N 4 (51). – С. 120-130. — DOI: 10.20874/2071-0437-2020-51-4-11.
DOI: 10.20874/2071-0437-2020-51-4-11

3.

Количество страниц: 19 с.

In this article the technique of classification of the Early Holocene microblade industries on sites with mixed cultural layers of Central Yakutia (Tuymaada valley) is discussed. This technique is based on classification in the complexes on stone artifacts of microliths, as a characteristic for the Sumnagin culture. Materials from sites are associated with the Mesolithic on the basis of the technical-typological and statistical analysis of materials from precisely stratified sites of the Sumnagin Culture of the Aldan and Olekma river basins. The stone inventory of the Sumnagin culture is based on the maximal use of blades from which practically all stone tool industrial products were produced, except for large cutting instruments. The presence of microblade tools in the common statistics of tool types is supported by a big amount of blades and the tools made of them. Prevailing amount of blades in relation to the flake tools, absence of ceramics or its small amount, in some cases, also testifies in favour of early dating. On the basis of analysis, the Sumnagin cultural complex on 11 sites of Tuymaada Valley is established: Kapitonovka, Kil'dyamtsy III, Severo-Zapadnaya II, Fermennoe Ozero, Syrdakh VI, Zernovaya II, Us'-Khatyng I, V, Vladimirovka IV, and Horo I, III. On about 25 sites where the microblades industries are excavated, at expansion of works the assumption of presence the Mesolithic stone assemblage in cultural layers can prove to be true.
Работа посвящена проблеме изучения мезолита в Центральной Якутии. Здесь было известно небольшое количество стоянок сумнагинской культуры, характеризующихся смешанными культурными комплексами, и датированных этим временем лишь по аналогиям инвентаря. В работе предложена методика определения раннеголоценовых комплексов в смешанных культурных слоях, основанная на выделении в общих комплексах каменного инвентаря микролитов, в большей степени характерных для сумнагинской культуры. Проведённый анализ позволил выделить сумнагинский культурный комплекс на 11 памятниках Туймаады. На ещё около 25 памятниках, где обнаружены микропластинчатые индустрии, при расширении работ, может подтвердиться предположение о наличии в культурных слоях мезолитического каменного инвентаря

Dyakonov, V. M. On the Problem of Classification of Microblade Industry Sites with Mixed Cultural Layers in the Mesolithic of Central Yakutia (on Materials from the Tuymaada Valley) / Victor M. Dyakonov // North Pacific Prehistory : archaeological studies journal. — 2007. — Vol. 1. — P. 129-147.

4.

Количество страниц: 4 с.

Gololobov, A. Yu. Modeling the influence of magnetospheric heat fluxes on the electron temperature in the subauroral ionosphere = Моделирование влияния магнитосферных потоков тепла на температуру электронов в субавроральной ионосфере / A. Yu. Gololobov, I. A. Golikov, I. I. Varlamov // Солнечно-земная физика = Solar-Terrestrial Physics. – 2017. – Т. 3, N 2 : 13-я российско-китайская конференция по космической погоде. – С. 54-57. – DOI: 10.12737/22595.
DOI: 10.12737/22595

5.

Количество страниц: 14 с.

Lazarev, N. P. Equilibrium problems for Kirchhoff–Love plates with nonpenetration conditions for known configurations of crack edges / N. P. Lazarev, H. Itou // Математические заметки СВФУ. — 2020. — Т. 27, N 3 (107), июль-сентябрь. — С. 52-65
DOI: 10.25587/SVFU.2020.75.68.005

6.

Количество страниц: 24 с.

Riesz potentials are convolution operators with fractional powers of some distance (Euclidean, Lorentz or other) to a point. From application point of view, such potentials are tools for solving differential equations of mathematical physics and inverse problems. For example, Marsel Riesz used these operators for writing the solution to the Cauchy problem for the wave equation and theory of the Radon transform is based on Riesz potentials. In this article, we use the Riesz potentials constructed with the help of generalized convolution for solution to the wave equations with Bessel operators. First, we describe general method of Riesz potentials, give basic definitions, introduce solvable equations and write suitable potentials (Riesz hyperbolic B-potentials). Then, we show that these potentials are absolutely convergent integrals for some functions and for some values of the parameter representing fractional powers of the Lorentz distance. Next we show the connection of the Riesz hyperbolic B-potentials with d’Alembert operators in which the Bessel operators are used in place of the second derivatives. Next we continue analytically considered potentials to the required parameter values that includes zero and show that when value of the parameter is zero these operators are identity operators. Finally, we solve singular initial value hyperbolic problems and give examples.

Shishkina, E. L. Method of Riesz potentials applied to solution to nonhomogeneous singular wave equations / E. L. Shishkina, S. Abbas // Математические заметки СВФУ. — 2018. — Т. 25, N 3 (99), июль-сентябрь. — С. 68-91.
DOI: 10.25587/SVFU.2018.99.16952

7.
Автор:

Количество страниц: 12 с.

Tomski, G. V. Comanche empire and sakha empire / Tomski Grigori ; Académie internationale CONCORDE // Concorde. – 2021. – N 4. – С. 85-95.

8.
Автор:

Количество страниц: 64 с.

Tomski, G. V. My personal self-assessement : trace in mathematics / Grigori Tomski ; CONCORDE International Academy // Bulletin de l’Académie Internationale CONCORDE. - 2021. – N 4. – С. 3-65.