Kyoto University, Research Institute of Sustainable Humanosphere
Информация не указана

Количество страниц: 14 с.

The spatial evolution of vortex-like flow structures induced by a negative sudden impulse (SI-) is studied on the basis of SuperDARN King Salmon HF radar (KSR) with other ground and satellite data. A large dip in the solar wind density induced a fairly large SI- with a SYM-H amplitude of ~40 nT. The SI-induced ionospheric flow signatures in the evening sector (MLT ~ 19 h) were observed by KSR as a westward flow associated with the preliminary impulse (PI) followed by a more intense eastward flow with the main impulse (MI) in the sub-auroral region on the magnetic latitude ~60-70 deg, consistent with the local ground magnetic field observations. Following the first PI-MI flow sequence, KSR saw a second and possibly third sequence of flow variation which were much smaller in flow amplitude than the first pair but showed qualitatively very similar flow variations and latitudinal/longitudinal propagation characterististics/ These observations can be interpreted as aftershocks of the first PI-MI; the same sequence of vortices and field-aligned currents were generated and then drifted anti-sunward with the same mechanism, namely the pumping motion of dayside magnetosphere. These results are qualitatively consistent with predictions suggested by recent numerical simulations.

Evolution of negative SI-induced ionospheric flows observed by SuperDARN King Salmon HF radar / T. Hori, A. Shinbori, N. Nishitani, T. Kikuchi, S. Fujita, T. Nagatsuma, O. Troshichev, K. Yumoto, A. Moiseyev, and K. Seki // Journal of Geophysical Research: Space Physics. – 1978. – 2012 (December), vol. 117, N 12. – P. A12223.
DOI: 10.1029/2012JA018093