Отраслевые подборки (УДК)
Издания подборки 101 - 110 из 202
101.

Количество страниц: 2 с.

Переходный процесс распада крупномасштабного магнитного поля Солнца на стадии его переполюсовки проявляется в виде гигантской "волны переполюсовки" с полугодовым периодом. Максимумы волны в индексе мерцаний космических лучей предшествуют минимумам интенсивности галактических космических лучей (ГКЛ) в среднем на три оборота Солнца. Полугодовая волна выявлена и в параметрах межпланетного магнитного поля ( в дисперсии ММП). Наличие волны переполюсовки объясняет единым образом "провал" в значениях большинства параметров как в максимуме солнечной активности ( эффект Гневышева), так и в начале ветви спада 11-летнего цикла.

Марков, В. В. Волна переполюсовки магнитного поля солнца во флуктациях космических лучей / В. В. Марков, В. И. Козлов // Труды VI сессии молодых ученых "Волновые процессы в проблеме космической погоды" [15-20 сентября 2003 г.]. - Иркутск : ИСЗФ, 2003. - С. 150-154.

102.

Количество страниц: 8 с.

Начиная с начала 2000-х годов зарубежными и российскими учеными проделаны многочисленные исследования динамики термокарстовых провалов, основанные на анализе разновременных космических снимков. В некоторых из них указывается на прямую взаимосвязь между изменением площади провалов и потеплением климата, в других такая связь не прослеживается. При этом в пределах одной и той же территории у разных исследователей наблюдаются противоречивые результаты, что обусловлено недостаточной разработанностью методик аэрокосмических исследований динамики термокарстовых провалов в имеющихся работах. Поэтому актуальность разработки надежной методики исследований динамики термокарстовых провалов по космическим снимкам, а экспериментальные исследования в различных районах криолитозоны России, проведенные на основе общей для всех районов разработанной методики, позволят выявить причины изменений и ответить на вопрос – могут ли термокарстовые провалы служить индикаторами реакции криолитозоны на современное потепление климата, что является не менее актуальной задачей. Целью является выявление эффективных методик в изучении термокарстовых провалов и прогноз увеличения с помощью геоинформационных технологий, а также 3D-визуализация термокарстового провала Батагайка. В статье проведен климатический анализ по данным Верхоянской метеостанции, и использованы новые методы и написаны блок-схемы для синхронизации обработки спутниковых снимков на двух ГИСпрограммах, таких как, IDRISI Selva и QGIS, и возможный прогноз на основе метода клеточного автомата для прогнозирования термокарстового провала Батагайка к 2038 году, с использованием ГИС-программ и разновременных спутниковых снимков Landsat 5(8). Сделана векторная карта эволюции термокарстового провала Батагай по следующим годам: 1991, 2006, 2019 и 2038 года

Матчитов, Ю. Я. Геомоделирование процессов эволюции термокарстового провала Батагай (Батагайка) с использованием гис / Ю. Я. Матчитов, С. Ж-П. Гадаль, ЮГ. Данилов // Вестник Северо-Восточного федерального университета им. М. К. Аммосова. Серия "Науки о земле" - 2022. - N 4 (28). - С. 77-84.
DOI: 10.25587/SVFU.2022.28.4.007

103.
Автор:
Мейер Вильгельм

Издательство: Издание и типография С. М. Проппера

Год выпуска: 1908

Серия, номер выпуска: Библиотека Знания

Количество страниц: 100 с.

106.

Количество страниц: 5 с.

Особенности генерации геомагнитных пульсаций во время внезапного начала магнитной бури 4 августа 2010 г. / А. В. Моисеев, В. А. Муллаяров, С. Н. Самсонов, А. Ду // Физика окружающей среды : материалы Всероссийской конференции с международным участием, посвященной 50-летию первого полета человека в космос и 75-летию регулярных исследований ионосферы в России, г. Томск, 27 июня - 1 июля 2011 г. – Томск : ТГУ, 2011. – С. 68-72.

107.

Количество страниц: 4 с.

Особенности одновременной генерации внезапного импульса и движущихся вихрей конвекции в событии 24 апреля 2009 г. / А. В. Моисеев, С. И. Соловьев, В. А. Муллаяров, С. Н. Самсонов, В. И. Попов, А. Ду // Физика окружающей среды : материалы VIII Международной школы молодых ученых. – Томск : ТГУ, 2010. – С. 119-122.

108.
Авторы:

Издательство: Полиграфкнига

Год выпуска: 1935

Серия, номер выпуска: Наркомвод СССР. Проектно-изыскательская контора Восточного ЦУРТ : Материалы по исследованиям рек Колымы и Индигирки ; Вып. VII

Количество страниц: 112 с.

109.

Количество страниц: 3 с.

В работе приводятся результаты регистрации черенковского излучения широких атмосферных ливней (ШАЛ), выполненных с помощью системы оптических трековых детекторов на основе камеры-обскуры в составе Якутской установки ШАЛ. Эти детекторы позволяют определить количество фотонов, приходящих с определенной высоты в атмосфере, и, таким образом, восстановить продольное развитие ливня. Хорошее согласие наблюдается между параметрами каскадных кривых ШАЛ, измеренными с помощью этого метода Xmax, и модельными расчетами. Получены предварительные данные о массовом составе космических лучей для диапазона энергий выше 1016 эВ.

Глубина максимума развития ШАЛ с энергиями выше 1016 эВ по измерениям в индивидуальных событиях трековыми черенковскими детекторами / В. П. Мохначевская, И. Е. Слепцов, С. П. Кнуренко, А. В. Сабуров, Ю. А. Егоров, З. Е. Петров // Известия Российской академии наук. Серия физическая. – 2019. – Т. 83, N 8. – С. 1134-1136. – DOI: 10.1134/S0367676519080295.
DOI: 10.1134/S0367676519080295

110.

Количество страниц: 4 с.

Приводятся результаты исследования возможной связи вариаций интенсивности грозовых разрядов, оцениваемых по потоку ОНЧ-сигналов грозовой природы, с вариациями параметров солнечного ветра. Принимаемые в Якутске сигналы отражают летом интенсивность локальных гроз (восток Сибири), а в зимнее время – грозовую активность в Африканском мировом грозовом центре. Наиболее высокие значения коэффициента корреляции получены при анализе зависимости грозовой активности с вариациями плотности частиц солнечного ветра. При этом установлено, что данная связь имеет знакопеременный в зависимости от сезона характер. Максимальный положительный коэффициент корреляции отмечается для августа–сентября, а отрицательный – для февраля, т.е. эффект максимального проявления вариаций плотности солнечного ветра в грозовой активности приходится на околоравноденственные периоды, что можно связать с особенностями передачи на высоты ионосферы магнитосферного электрического поля Һс утра на вечерһ, индуцированного потоком частиц солнечного ветра.

Муллаяров, В. А. Воздействие вариаций параметров солнечного ветра на грозовую активность / В. А. Муллаяров, В. И. Козлов, Р. Р. Каримов // Солнечно-земная физика = Solar-Terrestrial Physics. – 2008, N 12, Т. 2 (125). – С. 321-323.