Моделирование динамики формы плоского тела из ковкого металла при изотропной бомбардировке частицами песка
Обложка

Моделирование динамики формы плоского тела из ковкого металла при изотропной бомбардировке частицами песка

Статья в журнале

Русский

Библиогр.: с. 106 (4 назв.)

539.42+519.688(051.2)

33.4я5

математическая модель; дифференциальное уравнение; деформируемая поверхность; тор; обогащение; сепарация; полезные ископаемые; кинетическая энергия частиц; эволюция поверхности; mathematical model; differential equation; deformed surface; toroid; enrichment; separation; minerals; kinetic energy of particles; evolution of a surface

Обогащение полезных ископаемых

Математические заметки СВФУ. – 2017. – Т. 24, N 1 (93), январь - март

Первоначальная форма зерен золота, встречающихся в природе, в большинстве случаев имеет форму плоской пластины (чешуйчатую форму). Поэтому при пневмосепарации часто наблюдается торовидная форма кусков золота. При сепарировании форма зерен в виде тора считается наиболее эффективной, тем самым актуальна задача расчета времени образования торовидной формы куска золота. В настоящей работе рассматривается эволюция деформируемой поверхности плоского диска из ковкого металла при изотропной бомбардировке его поверхности мелкими частицами. Разработана математическая модель эволюции поверхности диска. Получено дифференциальное уравнение, описывающее изменение деформируемой поверхности круглого диска, которое решается численным методом Рунге — Кутты. Решение уравнения описывает деформируемую поверхность тела в зависимости от времени. Из результатов исследования следует, что наиболее устойчивой торовидной формы, при которой деформируемая поверхность достигает максимального значения, тело достигает достаточно быстро, затем наступает более медленное изменение поверхности до шаровидной формы. Оценено время образования торовидной формы диска при определенных параметрах исследуемой системы. Результаты могут быть использованы при разработках более точных моделей эволюции плоских тел при бомбардировке их поверхности мелкими частицами.
The initial form of the grains of gold found in the nature in most cases is a flat plate (a scaly form). However, during pneumoseparation, the toroidal shape of pieces of gold is often found and considered to be the most effective. Thus the task of estimating time of formation of a toroidal piece of gold is important. In the paper, we consider the evolution of the surface of a flat disk of malleable metal deformed by isotropic bombing with fine particles and develop a mathematical model of this evolution. We obtain a differential equation describing the change of the deformed surface of a round disk which is solved then by a Runge–Kutta method. Studying the solution of the equation, we found that the body rather quickly reaches the most stable toroidal form when the deformed surface gets its maximal value and then a slower transformation of the surface into the sphere follows. We estimate the time of formation of a toroid from a disk with certain parameters of the considered system. The received results could be used for developing more exact models of evolution of flat bodies bombed with fine particles. Keywords: mathematical model, differential equation, deformed surface, toroid, enrich.

Моделирование динамики формы плоского тела из ковкого металла при изотропной бомбардировке частицами песка / А. И. Матвеев, Д. А. Осипов, Д. Р. Осипов, Б. В. Яковлев. – Текст : непосредственный // Математические заметки СВФУ. – 2017. – Т. 24, N 1 (93) январь-март. – C. 99-108.

Читать фрагмент

Войдите в систему, чтобы открыть документ

Вам будет интересно