Специальные подборки
Издания подборки 1 - 10 из 41
1.

Количество страниц: 8 с.

Рассматривается процесс просачивания воды в трещиновато-пористую среду с учетом наличия вечной мерзлоты. Проводится численное исследование двумерной модельной задачи на основе метода конечных элементов. Процесс просачивания описывается уравнениями Ричардса, система трещин учитывается на основе модели двойной пористости, мультифизичную задачу замыкает задача Стефана для температурной компоненты.
The water seepage process in fractured porous media with permafrost is considered. Numerical study of two-dimensional model problem based on the finite element method. Seepage process is described by Richards equations, fractured system is taken into account on the basis of a double porosity model, multi-physics task closes Stefan problem for the thermal components.

Численное моделирование фильтрации в трещиновато-пористых средах с мерзлотой / А. В. Григорьев, кандидат физико-математических наук, доцент-исследователь, В. И. Васильев, доктор физико-математических наук, профессор, заведующий кафедрой, П. Е. Захаров, кандидат физико-математических наук, доцент-исследователь, П. В. Сивцев, ведущий инженер, И. К. Сирдитов, старший преподаватель ; ФГАОУ ВО "Северо-Восточный федеральный университет имени М. К. Аммосова" // Вторая Якутская комплексная экспедиция: начало пути : сборник материалов республиканской научно-практической конференции. – Якутск : Издательский центр СВФУ, 2017. – С. 305-312

2.

Количество страниц: 8 с.

Рассматривается численное моделирование температурного режима земляного полотна железной дороги в условиях криолитозоны. Численная реализация построена на основе метода конечных элементов, позволяющего производить численное моделирование в областях со сложной геометрией с учетом слоистости грунта и наличия теплоизоляции. Проведено численное сравнение влияния сезонных колебаний температуры окружающей среды, снежного и напочвенного покровов на температурный режим грунтов основания железной дороги. Представлены результаты численного расчета для различных геометрических форм насыпей земляного полотна с учетом теплоизоляции пеноплексом.
The numerical modeling of the thermal regime of a roadbed in conditions of cryolithozone is observed. The numerical implementation was made on the base of finite elements approach, with a help of which the numerical modeling in the field of complex geometry taking into account the ground banding and presence of thermal covering can be produced. The numerical comparison of the influence of seasonal fluctuations of temperature of the environment, snow and soil cover on the thermal regime of railway subsoil is held. The results of numerical calculation for various geometrical shapes of soil cover banket taking into account thermal covering with penoplex are represented.

Математическое моделирование теплового режима железнодорожного полотна в условиях криолитозоны=Mathematical Modeling of the Thermal Regime of a Railway Line in Conditions of Cryolithozone / П. Н. Вабищевич, С. П. Варламов, В. И. Васильев, М. В. Васильева, С. П. Степанов // Вестник Северо-Восточного федерального университета им. М. К. Аммосова. – 2013. – Т. 10, N 5. – C. 5-11.

3.

Количество страниц: 4 с.

Попов, В. В. Упрощенная модель промерзания пористой среды, насыщенной раствором соли / В. В. Попов // Наука и образование. – 1997. – N 4 (8), декабрь. – С. 113-115.

4.

Количество страниц: 8 с.

Несмотря на громадное количество литературы по численному моделированию задач теплообмена, общение со студентами старших курсов математического факультета ЯГУ, аспирантами и соискателями, научными сотрудниками, занимающимися этой проблемой, убеждает, что понимание физической сути математической записи моделей и их численной реализацией широкого распространения не получило, что серьезно мешает расширению приложений, необходимых для решения производственных вопросов многолетней мерзлоты. Авторы надеются, что эта статья в какой-то мере заполнит этот пробел.

Изаксон, В. Ю. Математические модели процесса промерзания - протаивания многолетнемерзлых горных пород и методы их численной реализации : (научно-популярный обзор) / В. Ю. Изаксон, С. Д. Мордовской // Наука и образование. – 1997. – N 4 (8), декабрь. – С. 37-43.

5.

Количество страниц: 6 с.

Бондарев, Э. А. Точное решение нелинейного уравнения фильтрации при неполном насыщении / Э. А. Бондарев, Н. С. Бородкина // Наука и образование. – 1997. – N 4 (8), декабрь. – С. 32-37.

6.

Количество страниц: 16 с.

Исследована разрешимость обратных задач нахождения вместе с решением u(x,t) также коэффициента q(x) в уравнении (-1)m+1 d2m+1u dt2m+1 + Au + pu f (x, t) + q(x)h(x, t) (x € £2, где £2 — ограниченная область пространства Rn переменных xi,... ,xn, t € (0,T), 0 < T < +ro, f(x,t) и h(x,t) — заданные функции, p — заданное действительное число, m — заданное натуральное число, A — оператор Лапласа, действующий по пространственным переменным). В качестве дополнительного условия (необходимость которого обусловлена наличием дополнительной неизвестной функции q(x)) в работе используется условие граничного (при t = 0 или t = т) переопределения. Для изучаемых задач доказываются теоремы существования и единственности регулярных решений (имеющих все обобщенные по С. Л. Соболеву производные, входящие в уравнение).
We study solvability of the inverse problems for finding both the solution u(x,t) and the coefficient q(x) in the equation d2m+iu (~l)m+1 dt2m+l +Ац + МЦ = f{x,t)+q{x)h{x,t), where x = (xi,...,xn) € fi, fi is a bounded domain in t € (0,T), 0 < T < +ro, f (x,t) and h(x,t) are given functions, p is a given real, m is a given natural, and A is the Laplace operator acting in spatial variables. As an additional condition (which is necessary due to presence of the additional unknown function q(x)), the boundary overdetermination condition is used in the article (with t = 0 or t = T). For the problems under study, the existence and uniqueness theorems for regular solutions are proved (all derivatives are the Sobolev generalized derivatives).

Акимова, Е. В. Линейные обратные задачи пространственного типа для квазипараболических уравнений / Е. В. Акимова, А. И. Кожанов // Математические заметки СВФУ. — 2018. — Т. 25, N 3 (99), июль-сентябрь. — С. 3-17.
DOI: 10.25587/SVFU.2018.99.16947

7.

Количество страниц: 10 с.

Получено решение однородного дифференциального уравнения дробного порядка типа Эйлера на интервале в классе функций, представимых дробным интегралом порядка а с плотностью из Ьх(0;1). С помощью метода эрмитовых форм (метода Льенара — Шипара) получены условия разрешимости для случаев двух, трех и любого конечного числа производных. Показано, что в случае, когда характеристическое уравнение имеет кратные корни, исходное уравнение допускает решение с логарифмическими особенностями.
We present the solution of the homogeneous fractional differential Euler-type equation on the half-axis in the class of functions representable by the fractional integral of order a with the density of Li(0; 1). Using the method of Hermitian forms (Lienard— Schipar's method), solvability conditions are obtained for the cases of two, three and a finite number of derivatives. It is shown that in the case when the characteristic equation has multiple roots original equation admits a solution with logarithmic singularities.

Жуковская, Н. В. Применение метода Льенара - Шипара к решению однородного дифференциального уравнения типа Эйлера дробного порядка на интервале / Н. В. Жуковская, С. М. Ситник // Математические заметки СВФУ. — 2018. — Т. 25, N 3 (99), июль-сентябрь. — С.33-42.
DOI: 10.25587/SVFU.2018.99.16949

8.

Количество страниц: 16 с.

Исследуется стационарный режим системы массового обслуживания (СМО) с бесконечным накопителем, одним обслуживающим прибором и экспоненциальным обслуживанием. На вход СМО поступает дважды стохастический пуассоновский поток, интенсивность которого является скачкообразным процессом с интервалами постоянства, распределенными по экспоненциальному закону. Предполагается, что значения интенсивности входного потока в точках разрыва слева и справа независимы. В работах, ранее опубликованных по данной тематике, получено достаточное условие существования и единственности стационарного режима СМО. В данной работе выполнен операторный анализ интегральных уравнений относительно характеристик стационарной СМО, показано необходимое и достаточное условие существования, единственности и неотрицательности решения системы интегральных уравнений, эргодичности СМО. Найдена стационарная производящая функция решения в виде сходящегося ряда. Отличительной особенностью настоящей работы является построение 2-й модели СМО и применение оператора сдвига коэффициентов производящей функции для стационарного распределения числа заявок.
We consider the queuing system (QS) with an infinite storage, one service device and exponential service. At the input of QS comes double stochastic Poisson flow whose intensity is a jump-like process with intervals of constancy distributed according to the exponential law. It is assumed that the input flow intensity values at the break points on the left and right are independent. In the earlier published works a sufficient condition of existence and uniqueness of the QS stationary regime was obtained. In this paper, the operator analysis of integral equations is performed with respect to the characteristics of the stationary SMO, the necessary condition of existence of the system of integral equations solution is obtained and the existence and uniqueness of the solution is proved. A stationary generating function of the solution in the form of a convergent series is found. A distinctive feature of this work is the construction of the 2nd model of QS and the use of the shift operator of coefficients of the generating function for stationary distribution of the customers number

Бондрова, О. В. Анализ уравнений СМО со скачкообразной интенсивностью входного потока / О. В. Бондрова, Т. А. Жук, Н. И. Головко // Математические заметки СВФУ. — 2018. — Т. 25, N 3 (99), июль-сентябрь. — С. 18-32.
DOI: 10.25587/svfu.2018.99.16948

9.

Количество страниц: 24 с.

Riesz potentials are convolution operators with fractional powers of some distance (Euclidean, Lorentz or other) to a point. From application point of view, such potentials are tools for solving differential equations of mathematical physics and inverse problems. For example, Marsel Riesz used these operators for writing the solution to the Cauchy problem for the wave equation and theory of the Radon transform is based on Riesz potentials. In this article, we use the Riesz potentials constructed with the help of generalized convolution for solution to the wave equations with Bessel operators. First, we describe general method of Riesz potentials, give basic definitions, introduce solvable equations and write suitable potentials (Riesz hyperbolic B-potentials). Then, we show that these potentials are absolutely convergent integrals for some functions and for some values of the parameter representing fractional powers of the Lorentz distance. Next we show the connection of the Riesz hyperbolic B-potentials with d’Alembert operators in which the Bessel operators are used in place of the second derivatives. Next we continue analytically considered potentials to the required parameter values that includes zero and show that when value of the parameter is zero these operators are identity operators. Finally, we solve singular initial value hyperbolic problems and give examples.

Shishkina, E. L. Method of Riesz potentials applied to solution to nonhomogeneous singular wave equations / E. L. Shishkina, S. Abbas // Математические заметки СВФУ. — 2018. — Т. 25, N 3 (99), июль-сентябрь. — С. 68-91.
DOI: 10.25587/SVFU.2018.99.16952

10.

Количество страниц: 12 с.

Изучена математическая модель равновесия двумерного упругого тела с двумя взаимно пересекающимися трещинами. Одна из трещин предполагается прямолинейной, а вторая — криволинейной. На обеих кривых, задающих трещины, ставятся условия непроникания в виде неравенств. Проводится анализ зависимости решений семейства вариационных задач от параметра, характеризующего вариацию длины прямолинейной трещины. Доказано существование решения задачи оптимального управления. Для этой задачи функционал качества определен с помощью функционала Гриффитса, характеризующего возможность развития трещины вдоль заданной кривой. Параметр управления задает изменение длины прямолинейной трещины.
A mathematical model describing an equilibrium of cracked two-dimensional bodies with two mutually intersecting cracks is considered. One of these cracks is assumed to be straight, and the second one is described with the use of a smooth curve. Inequality type boundary conditions are imposed at the both cracks faces providing mutual non-penetration between crack faces. On the external boundary, homogeneous Dirichlet boundary conditions are imposed. We study a family of corresponding varia-tional problems which depends on the parameter describing the length of the straight crack and analyze the dependence of solutions on this parameter. Existence of the solution to the optimal control problem is proved. For this problem, the cost functional is defined by a Griffith-type functional, which characterizes a possibility of curvilinear crack propagation along the prescribed path. Meanwhile, the length parameter of the straight crack is chosen as a control parameter.

Лазарев, Н. П. Задача оптимального управления длиной поперечной трещины в модели равновесия двумерного тела с двумя пересекающимися трещинами / Н. П. Лазарев, Е. М. Рудой, Т. С. Попова // Математические заметки СВФУ. — 2018. — Т. 25, N 3 (99), июль-сентябрь. — С. 43-53.
DOI: 10.25587/SVFU.2018.99.16950