Яковлев Борис Васильевич

Место работы автора, адрес/электронная почта: Северо-Восточный федеральный университет им. М. К. Аммосова, Физико-технический институт ; 677007, г. Якутск, ул. Кулаковского, 48 ; e-mail: b-yakovlev@mail.ru ; https://www.s-vfu.ru/

Ученая степень, ученое звание: д-р физ.-мат. наук

Область научных интересов: Электродинамика, философия

ID Автора: SPIN-код: 5604-7497, РИНЦ AuthorID: 175987

Деятельность: С 1985 г. работает в Якутском государственном университете.

Документы 1 - 10 из 16
1.

Количество страниц: 6 с.

Для эффективного обогащения золотосодержащих концентратов и шлихов с высоким содержанием магнитных минералов в лаборатории обогащения полезных ископаемых Института горного дела Севера Сибирского отделения Российской академии наук предложен способ обогащения в отсадочной машине с магнитной системой. В предложенном способе в отсадочной машине осуществляется комбинация гравитационного обогащения и магнитной сепарации. Важнейшим фактором процесса эффективного извлечения золота из шлиховых продуктов обогащения с содержанием железного скрапа и минералов с высокой магнитной восприимчивостью в отсадочной машине является постоянная разрыхленность формирующейся естественной постели. В дальнейшем способ был усовершенствован и разработан электроимпульсный источник для создания полюсопеременного магнитного поля, позволяющего обеспечить разрыхленное состояние постели. Разработана физико-математическая модель на основании уравнения типа Фоккера - Планка по определению вероятности прохождения через толщу постели частиц при условии требуемого состояния разрыхленности. Апробация модели показывает, что полученные расчеты коррелируются с результатами экспериментов на отсадочной машине с электромагнитной установкой при условиях отсадочного процесса: частоте отсадочного цикла 210 мин-1, высоте постели 80 мм, амплитуде 6 мм и длительности импульсов полюсопеременного магнитного поля с 0,1 с.
For the effective enrichment of gold-containing concentrates and heavy concentrate with a high content of magnetic minerals, a beneficiation method in a jigging machine with a magnetic system has been proposed in the laboratory of the Laboratory mineral processing of the Institute of Mining of the North SB RAS. In the proposed method, a combination of gravitational enrichment and magnetic separation is carried out in a jigging machine. The most important factor in the process of effective extraction of gold from concentrate enrichment products containing iron scrap and minerals with high magnetic susceptibility in a jigging machine is the constant loosening of the forming natural bed. Subsequently, the method was improved and an electric pulse source was developed to create a pole-alternating magnetic field, which makes it possible to ensure a loosened state of the bed. A physical and mathematical model has been developed based on a Fokker - Planck type equation to determine the probability of particles passing through the thickness of a bed under the condition of the required state of loosening. Approbation of the model shows that the obtained calculations correlate with the results of experiments on a jigger with an electromagnetic installation under the conditions of the jiggering process: jigger cycle frequency 210 min-1, bed height 80 mm, amplitude 6 mm and pulse duration of the pole-alternating magnetic field from 0,1 sec. The work was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (topic No. 0297-2021-0022, Unified state information system for recording the results of research and development work No. 122011800089-2) using the equipment of the Center for Collective Use of the Federal research center ҺYakut Scientific Center of the Siberian Branch of the Russian Academy of Sciencesһ (grant No. 13.TSKP.21.0016).

Слепцова, Е. С. Физико-математическая модель проницаемости тяжелых частиц через магнитную постель отсадочной машины с полюс опеременным магнитным полем / Слепцова Е. С., Яковлев Б. В., Матвеев А. И. ; Институт горного дела Севера им. Н. В. Черского // Успехи современного естествознания. - 2023. - N 12. - С. 218-223. - DOI: 10.17513/use.38195
DOI: 10.17513/use.38195

2.

Источник: Вестник Северо-Восточного федерального университета им. М. К. Аммосова. – 2021. – N 1 (81)

Количество страниц: 7 с.

Яковлев, Б. В. Гравитационное поле и космологическое расширение / Б. В. Яковлев // Вестник Северо-Восточного федерального университета им. М. К. Аммосова. – 2021. – N 1 (81). – С. 43-49.
DOI: 10.25587/m9368-0528-0511-o

3.

Количество страниц: 10 с.

О минимизации тепловыделения при бурении скважин по мерзлым породам / Р. М. Скрябин, Б. В. Яковлев, Н. Г. Тимофеев, Х. Ю. Иванов // Вестник Северо-Восточного федерального университета им. М. К. Аммосова. Серия "Науки о Земле". – 2017. – N 4 (08). – С. 37-46.

4.

Количество страниц: 8 с.

На основе концепции возможных вселенных даны интерпретации основных законов, принципов и понятий современной физики, это: второй закон термодинамики, стрелы времени, информационная энтропия, редукция волнового пакета, принцип наименьшего действия, дискретность функции действия, принцип неопределенности Гейзенберга, волновая природа движения частиц. Предлагаемая концепция позволяет по-новому взглянуть на проблемы измерения квантовых систем, квантовой нелокальности, явления декогеренции, феномена сознания и современной эпистемологии.
On the base of the concept of possible universes the interpretations of general laws, principles and concepts of the modern physics are given. They are: the second thermodynamics law, the time arrows, the information entropy, the reduction of wave packet, the principle of least action, discretization of action function, Heisenberg indeterminacy principle, the wave nature of particle motion. With a help of the suggested concept one can see at the issue of quantum systems dimension, quantum nonlocality, decoherence phenomenon, phenomenon consciousness and modernepistemology in a new light.

Яковлев, Б. В. Интерпретация квантовых явлений на основе концепции возможных вселенных=The Interpretation of Quantum Phenomena on the Base of the Concept of Possible Universes / Б. В. Яковлев // Вестник Северо-Восточного федерального университета им. М. К. Аммосова. – 2013. – Т. 10, N 5. – C. 18-24.

5.

Количество страниц: 8 с.

Зависимость гидравлической крупности от параметров частицы / И. А. Матвеев, Н. Г. Еремеева, Б. В. Яковлев // Горный информационно-аналитический бюллетень. – 2017. – N S24 : Материалы IV Всероссийской научно-практической конференции, посвященной памяти чл.-корр. РАН М. Д. Новопашина "Геомеханические и геотехнологические проблемы эффективного освоения месторождений твердых полезных ископаемых Северных и Северо-Восточных регионов России" (г. Якутск, 18-21 сентября 2017 г.). - С. 131-145

6.

Количество страниц: 8 с.

The initial form of the grains of gold found in the nature in most cases is a flat plate (a scaly form). However, during pneumoseparation, the toroidal shape of pieces of gold is often found and considered to be the most effective. Thus the task of estimating time of formation of a toroidal piece of gold is important. In the paper, we consider the evolution of the surface of a flat disk of malleable metal deformed by isotropic bombing with fine particles and develop a mathematical model of this evolution. We obtain a differential equation describing the change of the deformed surface of a round disk which is solved then by a Runge–Kutta method. Studying the solution of the equation, we found that the body rather quickly reaches the most stable toroidal form when the deformed surface gets its maximal value and then a slower transformation of the surface into the sphere follows. We estimate the time of formation of a toroid from a disk with certain parameters of the considered system. The received results could be used for developing more exact models of evolution of flat bodies bombed with fine particles. Keywords: mathematical model, differential equation, deformed surface, toroid, enrich.
При математическом моделировании процессов, происходящих в устройствах обогащения полезных ископаемых, появляются задачи определения вероятности местонахождения частицы на рабочих поверхностях устройств. В настоящей работе для решения подобной задачи предлагается статистический подход, т. е. при определении вероятности используется идея метода Гиббса. Рассмотрены проблемы моделирования процессов, происходящих в воздушном винтовом сепараторе. Разработаны математическая модель винтовой поверхности пневмосепаратора, модели движения частицы, потока невзаимодействующих частиц по рабочей поверхности сепаратора и алгоритм определения концентрации потока частиц. Рассчитанное распределение концентрации невзаимодействующих частиц на рабочей поверхности устройства отождествляется с распределением вероятности местонахождения одной частицы. Разработанный алгоритм определения вероятности положения частицы на рабочей поверхности пневмосепаратора может быть использован как элемент более сложной математической модели, например модели, где учитываются взаимодействия между частицами.
In mathematical modeling of mineral processing, there arise problems of determining the probability of the particle presence on the working surfaces of devices. In the paper, we propose a statistical approach to solving such problem, i. e., the idea of the Gibbs method is used. We consider problems of modeling processes in an air spiral separator. A mathematical model of the spiral surface of a pneumoseparator, a model of particle motion, a flux of noninteracting particles along the separator working surface, and an algorithm for determining the particle flux concentration are developed. The calculated distribution of the noninteracting particles concentration on the working surface of the device is identified with the probability distribution of the location of one particle. The developed algorithm for determining the probability of position of a particle on the working surface of the pneumoseparator can be used as an element of a more complex mathematical model, for example, a model where interactions between particles are taken into account.

Моделирование динамики формы плоского тела из ковкого металла при изотропной бомбардировке частицами песка / А. И. Матвеев, Д. А. Осипов, Д. Р. Осипов, Б. В. Яковлев // Математические заметки СВФУ. – 2018. – Т. 25, N 1 (97), январь-март. – C. 90-95.

7.

Количество страниц: 10 с.

Первоначальная форма зерен золота, встречающихся в природе, в большинстве случаев имеет форму плоской пластины (чешуйчатую форму). Поэтому при пневмосепарации часто наблюдается торовидная форма кусков золота. При сепарировании форма зерен в виде тора считается наиболее эффективной, тем самым актуальна задача расчета времени образования торовидной формы куска золота. В настоящей работе рассматривается эволюция деформируемой поверхности плоского диска из ковкого металла при изотропной бомбардировке его поверхности мелкими частицами. Разработана математическая модель эволюции поверхности диска. Получено дифференциальное уравнение, описывающее изменение деформируемой поверхности круглого диска, которое решается численным методом Рунге — Кутты. Решение уравнения описывает деформируемую поверхность тела в зависимости от времени. Из результатов исследования следует, что наиболее устойчивой торовидной формы, при которой деформируемая поверхность достигает максимального значения, тело достигает достаточно быстро, затем наступает более медленное изменение поверхности до шаровидной формы. Оценено время образования торовидной формы диска при определенных параметрах исследуемой системы. Результаты могут быть использованы при разработках более точных моделей эволюции плоских тел при бомбардировке их поверхности мелкими частицами.
The initial form of the grains of gold found in the nature in most cases is a flat plate (a scaly form). However, during pneumoseparation, the toroidal shape of pieces of gold is often found and considered to be the most effective. Thus the task of estimating time of formation of a toroidal piece of gold is important. In the paper, we consider the evolution of the surface of a flat disk of malleable metal deformed by isotropic bombing with fine particles and develop a mathematical model of this evolution. We obtain a differential equation describing the change of the deformed surface of a round disk which is solved then by a Runge–Kutta method. Studying the solution of the equation, we found that the body rather quickly reaches the most stable toroidal form when the deformed surface gets its maximal value and then a slower transformation of the surface into the sphere follows. We estimate the time of formation of a toroid from a disk with certain parameters of the considered system. The received results could be used for developing more exact models of evolution of flat bodies bombed with fine particles. Keywords: mathematical model, differential equation, deformed surface, toroid, enrich.

Моделирование динамики формы плоского тела из ковкого металла при изотропной бомбардировке частицами песка / А. И. Матвеев, Д. А. Осипов, Д. Р. Осипов, Б. В. Яковлев. – Текст : непосредственный // Математические заметки СВФУ. – 2017. – Т. 24, N 1 (93) январь-март. – C. 99-108.

8.

Количество страниц: 7 с.

Представлена математическая модель движения тяжелых частиц в окружении зерен в отсадочной машине. Зерна моделируются шарами определенного радиуса. Рассмотрен статистический подход для описания процесса. При этом используется модель движения броуновской частицы, в котором вместо кинетической энергии хаотического теплового движения молекул, бомбардирующих броуновскую частицу, учитывается кинетическая энергия зерен, окружающих рассматриваемое зерно тяжелой частицы и движущихся под воздействием вибрирующей силы отсадочной машины. Эта сила зависит от амплитуды и частоты, то есть параметров циклов отсадки. В результате математического моделирования получено уравнение типа Фоккера-Планка для фракций, распределяемых по плотности в камере отсадочной машины. Получены динамические кривые распределения тяжелых зерен по высоте постели.

Математическое моделирование процесса концентрации тяжелых частиц в постели отсадочной машины / Е. С. Слепцова, Л. В. Никифорова, Б. В. Яковлев, А. И. Матвеев // Горный информационно-аналитический бюллетень. – 2014. – N 10. – C. 239-245.

9.

Количество страниц: 7 с.

Одним из эффективных методов сепарации тяжелых зерен в сыпучей среде, например, золота, является гравитационная отсадка. В работах по моделированию процесса отсадки используется теория броуновской частицы, где решается уравнение типа ФоккераПланка, но в них фактически не учитывается взаимодействие частиц полезной фракции между собой. Экспериментальным путем определены параметры, учитывающие взаимодействие этих частиц, полученные математическим моделированием процесса. В качестве исследуемого материала берется магнетик, содержащийся в природном песке. Этот материал (тяжелая фракция) имеет большую плотность, чем песок (приблизительно 1,2 раза). Тяжелая фракция разделяется из песка с помощью постоянного магнита. В результате исследований получены теоретические распределения концентрации магнетика по высоте объема устройства адаптированные с экспериментальными данными. Исследования проведены при различных условиях: сухая смесь, жидкая смесь, различные режимы работы вибратора. Полученные распределения позволяют при определенных заданных начальных условиях (например, при определенном процентном отношении тяжелой фракции от общего объема песка) вычислить вероятное время, за которое образуется некоторый заданный слой материала на дне емкости отсадочной постели с определенной концентрацией полезной фракции. Результаты исследования показали, что градиентная сила со временем увеличивается, а сила сопротивления среды наоборот убывает, если в начальный момент времени вся полезная (тяжелая) фракция находилась на верхней части массы песка.
One of efficient methods to separate heavy grains from granular material, for instance, gold, is gravity jigging. The known approaches to jigging modeling use the Brownian particle theory and solve the Fokker-Planck equation. The interaction between particles of useful fraction is neglected in this case. The present article is focused on determination of parameters which take into account such interaction. The theoretically modeled parameters are later on found experimentally. The test material is chosen to be magnetic substance contained in natural sand. This material (heavy particles) have higher density than sand (by a factor of 1.2 approximately). The heavy particles are separated from sand using permanent magnet. As result of the research, theoretical distributions of the magnetic substance concentrations along the height of a test container are obtained and adapted to experimental data. The tests are carried out in varied conditions: dry mix, liquid mix, varied vibration regimes. The resultant distributions, given the preset initial conditions (e.g. definite percentage of heavy particles and total sand volume), enable calculating time of formation of a preset material layer with the certain concentration of useful fraction on the bottom of the settlement container. The research findings show that the gradient force grows in time while the medium resistance decreases vice versa in case that all useful fraction (heavy particles) is at the top of the sand contained at the initial time

Исследование распределения тяжелых фракций в колеблющейся сыпучей среде / Е. С. Слепцова, Б. В. Яковлев, А. И. Матвеев. – Текст : непосредственный // Горный информационно-аналитический бюллетень. – 2018. – N 9. – C. 186-192.

10.

Количество страниц: 7 с.

Представлена математическая модель процесса отсадки. Используются статистический подход для описания процесса и теория броуновского движения. Получено уравнение типа Фоккера-Планка для фракций, помещенных в отсадочной машине. Рассчитаны распределения исследуемых зерен в различных случаях.
We present a mathematical model of jigging using the statical approach for describing the process and the theory of Brownian motion. The Fokker-Planck equation is obtained for fractions in a jigging machine. The distributions of the grainy rocks under study are calculated in various cases.

Математическое моделирование процесса отсадки / Л. В. Никифорова, А. И. Матвеев, Е. С. Слепцова, Б. В. Яковлев. – Текст : непосредственный // Математические заметки СВФУ. – 2014. – Т. 21, N 1, январь-март. – C. 106-112.