Матвеев Андрей Иннокентьевич

Место работы автора, адрес/электронная почта: Институт горного дела Севера им. Н. В. Черского СО РАН ; 677007, г. Якутск, пр. Ленина, 43 ; http://www.igds.ysn.ru/

Ученая степень, ученое звание: д-р техн. наук

Область научных интересов: Процессы дезинтеграции высокоглинистых песков и кусковых рудных геоматериалов, обогащение полезных компонентов, разделение минералов в водной и воздушной средах и приложении к ним различных физических полей (магнитных и ультразвуковых) для интенсификации процессов

ID Автора: SPIN-код: 6263-7533, РИНЦ AuthorID: 71026

Деятельность: С 1989 г. работает в ИГДС.

Документы 41 - 50 из 106
41.

Количество страниц: 8 с.

Изложены результаты экспериментальных исследований проведенных в крутонаклонном концентраторе, разработанном и созданном в ИГДС СО РАН имени Н.В. Черского. Определены рациональные конструктивные и режимные параметры работы укрупненной лабораторной модели. Улучшена конструкция донной части концентратора,в связи, чем появилась возможностьперечистки и сокращения осаждаемого материала в донной части. Достигнуто сокращение концентрата в 2 раза без потерь ценного тяжелого компонента (золота) тонких фракций крупностью -0,25+0,00 мм. Проведены экспериментальные исследования процессов извлечения золота из хвостов обогащения алмазосодержащих песков в натурных (полевых) условиях в опытном варианте концентратора с пропускной способностью до 9 м3/ч по твердому и до 70 м3/ч по пульпе при рабочем объеме камеры концентратора 150 л, была достигнута высокая производительность и степень сокращения концентратора, что подтверждает конкурентоспособность нового оборудования.
The results of experimental studies conducted in steeply inclined concentrator, designed and developed in IGDS SO RAN N.V. Chersky name. The rational design and regime parameters of the enlarged laboratory model. Improved hub structure bottom in connection than recleaning the opportunity and reduce the deposited material at the bottom. Achieved reduction in concentrate by 2 times without loss of valuable heavy component (gold) fines of size 0. 25 +0.00 mm. Experimental study of the processes of extracting gold from the tailings of diamond-bearing sands in situ (field) conditions in the test version of the concentrator with a capacity of up to 9 m3/h at a fixed and up to 70 m3/h pulp with a working volume of the concentrator chamber 150 liters, has achieved a high and the degree of performance reduction of the hub, which supports the competitiveness of the new equipment.

Концентратор для обогащения мелкого золота / И. А. Матвеев, Н. Г. Еремеева, А. И. Матвеев, А. М. Монастырев. – Текст : непосредственный // Горный информационно-аналитический бюллетень. – 2016. – N 12. – C. 61-68.

42.

Количество страниц: 5 с.

Приведен краткий обзор магнитных шлюзов, предназначенных для дополнительного улавливания мелкого и тонкого золота. Рассмотрен вариант магнитного шлюза, разработанного в лаборатории обогащения полезных ископаемых ИГДС, который по результатам лабораторных испытаний имеет большую эффективность, чем известные магнитные шлюзы. приведена теоретическая оценка устойчивости высоты ворса из магнитных минералов в зависимости от напряженности магнитного поля и скорости движения частиц золота.
The brief review of magnetic locks intended for additional capture of fine and thin gold is given. A variant of the magnetic gateway, developed in the laboratory for the mineral processing of IGDS, is considered, which, according to the results of laboratory tests, has greater efficiency than the known magnetic gateways. A theoretical assessment of the stability of the height of the pile of magnetic minerals is given, depending on the magnetic field strength and the velocity of the movement of gold particles.

Магнитный шлюз с замкнутыми вертикальными силовыми линиями / С. М. Федосеев, Е. С. Слепцова, А. И. Матвеев. – Текст : непосредственный // Горный информационно-аналитический бюллетень. – 2010. – N 9. – C. 24-27.

43.

Количество страниц: 7 с.

Представлена математическая модель движения тяжелых частиц в окружении зерен в отсадочной машине. Зерна моделируются шарами определенного радиуса. Рассмотрен статистический подход для описания процесса. При этом используется модель движения броуновской частицы, в котором вместо кинетической энергии хаотического теплового движения молекул, бомбардирующих броуновскую частицу, учитывается кинетическая энергия зерен, окружающих рассматриваемое зерно тяжелой частицы и движущихся под воздействием вибрирующей силы отсадочной машины. Эта сила зависит от амплитуды и частоты, то есть параметров циклов отсадки. В результате математического моделирования получено уравнение типа Фоккера-Планка для фракций, распределяемых по плотности в камере отсадочной машины. Получены динамические кривые распределения тяжелых зерен по высоте постели.

Математическое моделирование процесса концентрации тяжелых частиц в постели отсадочной машины / Е. С. Слепцова, Л. В. Никифорова, Б. В. Яковлев, А. И. Матвеев // Горный информационно-аналитический бюллетень. – 2014. – N 10. – C. 239-245.

44.

Количество страниц: 7 с.

Представлена математическая модель процесса отсадки. Используются статистический подход для описания процесса и теория броуновского движения. Получено уравнение типа Фоккера-Планка для фракций, помещенных в отсадочной машине. Рассчитаны распределения исследуемых зерен в различных случаях.
We present a mathematical model of jigging using the statical approach for describing the process and the theory of Brownian motion. The Fokker-Planck equation is obtained for fractions in a jigging machine. The distributions of the grainy rocks under study are calculated in various cases.

Математическое моделирование процесса отсадки / Л. В. Никифорова, А. И. Матвеев, Е. С. Слепцова, Б. В. Яковлев. – Текст : непосредственный // Математические заметки СВФУ. – 2014. – Т. 21, N 1, январь-март. – C. 106-112.

45.

Количество страниц: 4 с.

Винокуров, В. Р. Методика расчета рабочих параметров работы центробежных аппаратов измельчения многократного динамического воздействия / В. Р. Винокуров, А. И. Матвеев // Геомеханические и геотехнологические проблемы эффективного освоения месторождений твердых полезных ископаемых северных и северо-восточных регионов России : труды Всероссийской научно-практической конференции, посвященной памяти чл.-кор. РАН Новопашина М. Д. (г. Якутск, 13-15 сентября 2011 г.). — Якутск : Издательство Института мерзлотоведения им. П. И. Мельникова СО РАН, 2011. — С. 151-154.

46.

Количество страниц: 8 с.

Теоретически рассмотрено движение частиц внутри винтового пневмосепаратора. На начальной стадии рассматривается вспомогательная модель: движение частицы по конической поверхности с данным углом полураствора под действием аксиального потока воздуха. В этом случае нормаль к поверхности конуса имеет две компоненты: радиальную и вертикальную. Разработанная модель позволяет найти закон движения частицы по конической поверхности. Чтобы получить винтовую поверхность усложняем модель, а именно, к компонентам нормали поверхности добавляем аксиальную третью компоненту. Тогда созданная нормаль будет описывать винтовую поверхность. В качестве рабочей поверхности пневмосепаратора выбрана винтовая поверхность с определенным углом раствора и аксиальным углом наклона. Движение частиц происходит только по рабочей поверхности. Зная закон движение для одной частицы, можно определить траектории и для системы невзаимодействующих частиц. Таким образом, в первом приближении для невзаимодействующих частиц можно определить концентрацию частиц на винтовой поверхности, как и в радиальном направлении, так и в вертикальной плоскости.
In this paper theoretically discusses the motion of particles inside the screw air separator. At the initial stage auxiliary model is considered: particle motion along a conical surface with a given angle under the action of the axiales flow of air. In this case the normal to the surface of the cone has two components: vertical and radial. Model allows to find the law of motion of a particle along a conical surface. To get the screw surface sophisticate model, namely, the components of the surface normal axial add a third component. Then set up will describe the normal helical surface. As the working surface of the spiral air separator is chosen with a specific surface of angle and axial angles. The particle motion occurs only at the working surface. Knowing the law of motion of a single particle, we can determine the trajectory for the system of non-interacting particles. Thus, in a first approximation for non-interacting particles the particle concentration can be determined on a screw surface, as well as in the radial direction and in the vertical plane.

Моделирование движения частиц в винтовом пневмосепараторе / А. И. Матвеев, И. Ф. Лебедев, Л. В. Никифорова, Б. В. Яковлев // Горный информационно-аналитический бюллетень. – 2014. – N 10. – C. 172-178.

47.

Количество страниц: 8 с.

The initial form of the grains of gold found in the nature in most cases is a flat plate (a scaly form). However, during pneumoseparation, the toroidal shape of pieces of gold is often found and considered to be the most effective. Thus the task of estimating time of formation of a toroidal piece of gold is important. In the paper, we consider the evolution of the surface of a flat disk of malleable metal deformed by isotropic bombing with fine particles and develop a mathematical model of this evolution. We obtain a differential equation describing the change of the deformed surface of a round disk which is solved then by a Runge–Kutta method. Studying the solution of the equation, we found that the body rather quickly reaches the most stable toroidal form when the deformed surface gets its maximal value and then a slower transformation of the surface into the sphere follows. We estimate the time of formation of a toroid from a disk with certain parameters of the considered system. The received results could be used for developing more exact models of evolution of flat bodies bombed with fine particles. Keywords: mathematical model, differential equation, deformed surface, toroid, enrich.
При математическом моделировании процессов, происходящих в устройствах обогащения полезных ископаемых, появляются задачи определения вероятности местонахождения частицы на рабочих поверхностях устройств. В настоящей работе для решения подобной задачи предлагается статистический подход, т. е. при определении вероятности используется идея метода Гиббса. Рассмотрены проблемы моделирования процессов, происходящих в воздушном винтовом сепараторе. Разработаны математическая модель винтовой поверхности пневмосепаратора, модели движения частицы, потока невзаимодействующих частиц по рабочей поверхности сепаратора и алгоритм определения концентрации потока частиц. Рассчитанное распределение концентрации невзаимодействующих частиц на рабочей поверхности устройства отождествляется с распределением вероятности местонахождения одной частицы. Разработанный алгоритм определения вероятности положения частицы на рабочей поверхности пневмосепаратора может быть использован как элемент более сложной математической модели, например модели, где учитываются взаимодействия между частицами.
In mathematical modeling of mineral processing, there arise problems of determining the probability of the particle presence on the working surfaces of devices. In the paper, we propose a statistical approach to solving such problem, i. e., the idea of the Gibbs method is used. We consider problems of modeling processes in an air spiral separator. A mathematical model of the spiral surface of a pneumoseparator, a model of particle motion, a flux of noninteracting particles along the separator working surface, and an algorithm for determining the particle flux concentration are developed. The calculated distribution of the noninteracting particles concentration on the working surface of the device is identified with the probability distribution of the location of one particle. The developed algorithm for determining the probability of position of a particle on the working surface of the pneumoseparator can be used as an element of a more complex mathematical model, for example, a model where interactions between particles are taken into account.

Моделирование динамики формы плоского тела из ковкого металла при изотропной бомбардировке частицами песка / А. И. Матвеев, Д. А. Осипов, Д. Р. Осипов, Б. В. Яковлев // Математические заметки СВФУ. – 2018. – Т. 25, N 1 (97), январь-март. – C. 90-95.

48.

Количество страниц: 10 с.

Первоначальная форма зерен золота, встречающихся в природе, в большинстве случаев имеет форму плоской пластины (чешуйчатую форму). Поэтому при пневмосепарации часто наблюдается торовидная форма кусков золота. При сепарировании форма зерен в виде тора считается наиболее эффективной, тем самым актуальна задача расчета времени образования торовидной формы куска золота. В настоящей работе рассматривается эволюция деформируемой поверхности плоского диска из ковкого металла при изотропной бомбардировке его поверхности мелкими частицами. Разработана математическая модель эволюции поверхности диска. Получено дифференциальное уравнение, описывающее изменение деформируемой поверхности круглого диска, которое решается численным методом Рунге — Кутты. Решение уравнения описывает деформируемую поверхность тела в зависимости от времени. Из результатов исследования следует, что наиболее устойчивой торовидной формы, при которой деформируемая поверхность достигает максимального значения, тело достигает достаточно быстро, затем наступает более медленное изменение поверхности до шаровидной формы. Оценено время образования торовидной формы диска при определенных параметрах исследуемой системы. Результаты могут быть использованы при разработках более точных моделей эволюции плоских тел при бомбардировке их поверхности мелкими частицами.
The initial form of the grains of gold found in the nature in most cases is a flat plate (a scaly form). However, during pneumoseparation, the toroidal shape of pieces of gold is often found and considered to be the most effective. Thus the task of estimating time of formation of a toroidal piece of gold is important. In the paper, we consider the evolution of the surface of a flat disk of malleable metal deformed by isotropic bombing with fine particles and develop a mathematical model of this evolution. We obtain a differential equation describing the change of the deformed surface of a round disk which is solved then by a Runge–Kutta method. Studying the solution of the equation, we found that the body rather quickly reaches the most stable toroidal form when the deformed surface gets its maximal value and then a slower transformation of the surface into the sphere follows. We estimate the time of formation of a toroid from a disk with certain parameters of the considered system. The received results could be used for developing more exact models of evolution of flat bodies bombed with fine particles. Keywords: mathematical model, differential equation, deformed surface, toroid, enrich.

Моделирование динамики формы плоского тела из ковкого металла при изотропной бомбардировке частицами песка / А. И. Матвеев, Д. А. Осипов, Д. Р. Осипов, Б. В. Яковлев. – Текст : непосредственный // Математические заметки СВФУ. – 2017. – Т. 24, N 1 (93) январь-март. – C. 99-108.

49.

Количество страниц: 4 с.

Представлены результаты экспериментальных данных по изучению особенностей перемещения частиц в восходящем потоке моделированием в специальном стенде с искривленной трубой. Искривленная труба позволяет наблюдать особенности перемещения частиц вдоль поверхности при разных углах наклона. Установлено, что пластинчатые и удлиненные частицы в потоке перемещаются вдоль поверхности внутренней стенки трубы, ориентированные своей длинной стороной, и по мере увеличения скорости потока они постепенно Һвползаютһ по дуге на больший угол наклона. Затем, по достижении определенного угла наклона, частицы мгновенно разворачиваются своим наибольшим сечением поперек направления потока и выводятся за пределы трубы. Для раскрытия физической картины движения частиц в гидродинамической среде в рассматриваемых условиях разработана модель. Определены условия отрыва частицы от внутренней поверхности трубы при определенном угле наклона поверхности, вдоль которой перемешается частица удлиненной и уплощенной формы под воздействием восходящего потока воды. Выведена формула для расчета угла отрыва частицы в криволинейной поверхности в восходящем потоке. Вычисления проведены в системе Mathematica. Теоретически рассчитанные углы отрыва частиц находятся в диапазоне полученных экспериментальных данных. В ходе исследования было подтверждено что, для частиц пластинчатой (удлиненной) формы имеется критический угол наклона, при котором частица захватывается восходящим потоком определенной скорости
Results of experimental of studied the characteristics of the particles moving in an upward flow modeling in a special stand with a curved pipe. Curved pipe allows us to observe the movement of the particles along the surface at different angles of inclination. It has been established that the lamellar particles and are elongated in the flow moving along the inner wall surface of the tube oriented with their long side and increasing the flow rate, they progressively Һcreepһ along the arc of a larger angle of inclination. Then, after reaching a certain angle, the particles dramatically unfold its largest cross section perpendicular to the direction of flow and vented outside of the tube. For the disclosure of the physical picture of the motion of particles in the hydrodynamic environment in these conditions developed model. The conditions of separation of the particle from the inner surface of the pipe at a certain angle of inclination of the surface along which the particle mix up the flattened and elongated forms under the influence of the upstream water. The formula for calculating the angle of separation of particles in a curved surface upstream. The calculations are performed in the system Mathematica. Theoretically calculated angles of avulsion particles are in the range of the experimental data. During the study it was confirmed that particles of the platelet (elongated) shape has a critical angle at which the particle is trapped upflow certain speed.

Модель движения частиц в восходящем потоке по искривленной поверхности / И. А. Матвеева, А. И. Матвеев, Н. Г. Еремеева, В. Е. Филиппов // Горный информационно-аналитический бюллетень. – 2014. – N 10. – C. 179-182.

50.

Количество страниц: 14 с.

Модульный принцип подхода к созданию технологий переработки минерального сырья в Арктической зоне / А. И. Матвеев // Горный информационно-аналитический бюллетень. – 2017. – N S24 : Материалы IV Всероссийской научно-практической конференции, посвященной памяти чл.-корр. РАН М. Д. Новопашина "Геомеханические и геотехнологические проблемы эффективного освоения месторождений твердых полезных ископаемых Северных и Северо-Восточных регионов России" (г. Якутск, 18-21 сентября 2017 г.). - С. 39